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Therefore, a value of Dpggpec > 107% cm? sec!
must control the diffusion of lead into the iron.
The results indicate that relatively small
amounts of certain second elements can change
grain-boundary diffusity to a large extent. Dis-
continuous precipitation is induced, if a more
stable compound can be formed with the atoms
which have penetrated through the surface. This
process is likely to be of some practical im-
portance, because lead-induced failures have
already been reported in high strength steels [4].
It is not known as yet which other alloying
elements in steels will produce similar effects.
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Improved "“single-crystal’”’ texture in
high-density polyethylene

Any study of the relation between structure and
physical properties of crystalline polymers is
greatly facilitated by using a material with as
single and well-defined a texture as possible. In
studies on high density bulk polyethylene it has
been established that suitable combinations of
deformation and heat-treatment can result in an
oriented polycrystalline sample with a texture
resembling that of a single crystal [1-9]. The
degree of orientation obtained depends on the
method used, and to date one of the most succes-
ful techniques for this has been the combination
of compression-orienting followed by high pres-
sure annealing [6, 8]. The purpose of this note
is to report a modification of the above technique
which has further improved the polyethylene
texture.

The material used in this investigation was
injection-moulded high density polyethylene
(Rigidex 9) supplied in the form of granules by
British Petrochemicals Limited. The material
was oriented and annealed using similar ap-
paratus to that described earlier [6], but
thermistor-controlled heaters were added to the
compression dies so that material could be com-
pressed at elevated temperatures. The injection-
moulded bar was first compression-oriented at
110 + 2°C and then annealed for 15 min at
207 4 3°C and 4 kbar pressure. The material
was initially 12.5 mm thick and at the end of the
process was 0.5 mm (thickness reduction of 25
times). Wide-angle X-ray photographs revealed

© 1974 Chapman and Hall Ltd.

that prior to annealing, the compression
oriented material had a good ‘single-crystal’
texture of orthorhombic polyethylene, but there
were also reflections indicating the presence of
some monoclinic polyethylene. Subsequent pres-
sure-annealing removed the monoclinic phase
but also caused a slight reduction in the degree of
crystallographic orientation in the specimen.
The final texture was examined by taking
wide-angle pole figures using the diffractometer
technique described earlier [10]. The combined
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Figure 1. Combined wide-angle pole:_ﬁgures for the (200),
(020) and (002) poles for hot compressed/pressure-an-
nealed high density polyethylene.
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TABLE I Orientation functions frz:,z and mean angular deviations {¢nx1,z>

Reference fooé,D $002,D Savow £a00,N Joao, £o20,T
Present work 0.989 4.9° 0.972 7.8° 0.972 7.8°
8 0.983 6.1° 0.967 8.6° 0.969 8.2°
9 0.986 5.5° 0.897 15.1° 0.898 15.1°
7 0.994 3.6° 0.844 18.8° 0.849 18.5°

pole figures for the (200), (020) and (002)
reflections are shown in Fig. 1; the specimen
reference axes are labelled N (the direction of
compressional deformation), D (the direction of
extensional deformation) and 7 (the transverse
direction). As with other highly oriented samples
[9] it is more convenient to display the intensity
distributions only over the relevant portions of
the reflection hemisphere. Thus, for clarity, Fig. 1
is drawn with a discontinuous scale in the polar
angle y (angle between a pole and D); the (002)
poles are then entirely mapped from 0° to 10°
and (200) and (020) from 80° to 90° x. It can
be seen at a glance that the polyethylene texture
is very close to the ideal single crystal texture, in
which the unit cell directions a, b and ¢ would be
exactly parallel to N, T and D respectively. The
degree of departure from ideality is assessed by
calculating from Fig. 1 the orientation functions
Sfrn,z defined [9] as 3/2<cos? £1,2) — %, Where
&0,z 18 the angle between any of the principal
poles and its direction (Z) of preferred orienta-
tion. (For the ideal single crystal, all such func-
tions are equal to unity.) The resulting orienta-
tion functions and their equivalent mean angular
deviations from ideality, <&, 1,z>, are tabulated
below for the present texture, together with
values obtained from other polyethylene “‘single-
crystal” textures [7-9].

The texture obtained here is significantly better
than that found by Young and Bowden [8]. This
improvement appears to be due to the fact that
the hot-compressed material described here has
a much larger thickness reduction (25 times) than
the previous cold-compressed material (6 times).
This has particularly reduced the average mis-
alignment of chain axes (from 6.1° to 4.9°).
There is also a slight improvement in the
orientation of a- and b-axes (from 8.4° to 7.8°
deviation). Although the “single-crystal” texture
obtained by Buckley and McCrum [7] by hot-
drawing and annealing has a much greater c-axis
alignment (only 3.6° deviation) the orientation of
a- and b-axes is less well defined, the (200) and
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(020) poles being particularly spread out in the
NT plane giving high (18.6°) overall angular
deviations.

In conclusion, the present technique of
orienting high density polyethylene (hot-com-
pression/pressure-annealing) has resulted in an
unambiguous  crystallographically  “single-
crystal” texture with the highest degree of
perfection so far reported.
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